
Octo+ Class Library (Pack 1) 1

Octo+ Class Library
Reaching out more than one helping hand.

Contents
OCTO+ CLASS LIBRARY...

CONTENTS...
INTRODUCTION..
GOAL..

Value for money..
Administration/Maintenance..
Full Source...
New contributions...
Quality assurance...
Free DefManager...

GENERAL STRUCTURE..
FILE ORGANISATION...
FILE MANIPULATION..

Encryption..
Binary Difference...

UTILITY CLASSES..
String and date...
Version information..

HOW TO USE..
REGISTRATION...
SINGLE USER OCTO+ CLASS SOURCE CODE LICENSE AGREEMENT...

Introduction
This package of classes provides an integrated solution to file management problems. All
classes are fully MFC compliant and work on both 16 and 32 bit platforms.

These classes are not merely wrappers around the original API-functions, but are a real object
oriented representation of the different objects encountered in file management.

All classes are derived from the base class CObject. Dynamic type checking using the IsKindOf function
is supported on all classes. The diagnostic features Dump and AssertValid are implemented in every
class.

The source code contains for every function clearly stated remarks about their use, the meaning of in/out
parameters, the result value and their effect. All public functions are documented in the header file,
while the protected and private functions are documented in the CPP-file. If you don’t derive from this
classes, you normally don’t have to look at the implementation itself

The classes are designed with two purposes in mind. First, they can be used as they are. You do not need
to derive other classes from it before they are useful. Secondly, they are designed with other uses in
mind : so you can easily adjust them to more specific needs if you want to.

Octo+ Class Library (Pack 1) 2

Goal

Value for money
We feel this library to be valuable to every C++ programmer using MFC. One single useful class already
generates a return on investment, by saving countless hours of programming. We plan to release
numerous other classes and therefore offer this library as an annual subscription. Entitling you to every
new class that is released for the duration of one year starting at subscription date.

Administration/Maintenance
The Octo+ class library is fully compatible with the latest 16-bit and 32-bit releases of Visual C++Ô
including Visual C++ 1.5x (16-bit), Visual C++ 2.2 (32-bit) and Visual C++ 4.0 (32-bit). The library fills
Windows development areas not covered by the Microsoft foundation class library. We will continue
administering the classes so that they are not in conflict with newer versions of MFC or operating systems
released by Microsoft. You will receive the classes when they become available.

This to avoid that you have to program something that already available. Productivity is our aim.

Full Source
The class library comes in Full Source and is well documented. Please read the license agreement to
avoid any misunderstandings.

New contributions
Earn your subscription to the class library by contributing classes. These classes should be of the same
quality level as the ones we produced to start this project off. When we add your class to the library you
get a free subscription. The subscription is valid for one year. The classes contributed remain in the
library until they are made obsolete by an MFC release of Microsoft. If you have a better class than the
one available in the library let us know. Unless otherwise requested we mention the name of the author.
Be aware that submitting the class entitles us to redistribute it. We only accept classes submitted in full
source. Classes will not be edited without your knowledge.

Quality assurance
We will only deliver classes that work, are of true value and are well documented. The library should
avoid countless hours spent on searching for a new class or reinventing the wheel. Each class is
evaluated by a panel of four C++/MFC experts. It is not our aim to become a junk class library, that
consists of a little wrapper around a function call. You know that there is a lot out there, but are unsure
about its quality. We would like to become a quality label you can rely on.

Free DefManager
When purchasing the Octo+ class library you receive a free license for a 32bit DefManager. The
Ultimate tool to generate DLL’s in Visual C++. Value $29.

General structure
The area of these classes can be divided into two parts : file organisation and file manipulation. The first
group of classes takes care of file system matters : directory organisation, searching for certain files,
copying etc. The second part are classes that actually change the file's contents : encryption
and binary difference.

The following drawing gives a general picture of the relationships between the different
classes. The notation that is used is that of Coad-Yourdon. Half a circle symbolises
inheritance (... is derived from ...) and a triangle means containment (... is part of ...).

Octo+ Class Library (Pack 1) 3

Apart from the class CString all classes are directly or indirectly derived from the base class
CObject. In order to avoid a clutter in the drawing this relationship is not drawn.

File organisation
File organisation involves all the issues of the directory management on the underlying file system.

The two basic classes that are used for this are CDirSpec and CFileSpec. They represent the
specification of a directory (drive and subdirectory) and of a file (base name and extender). Together
they form a CPathSpec. E.g. C:\Windows\256color.bmp is a path specification. The first part (C:\
Windows) is the directory spec and the second part (256color.bmp) is the file spec. The directory spec
consists of a drive spec (C:) and a subdirectory (\Windows). The file spec contains the base name
(256color) and the extender (bmp). All three classes have a lot of easy access functions to use each part
directly.

CString sBaseName;
CPathSpec path;
path.SetPath(“C:\\Windows\\256color.bmp”);
sBaseName = path.GetBaseName();

Because CPathSpec inherits from both CDirSpec and CFileSpec all their function can also be applied to a
path spec.

Apart from structuring the directory and file specification, different action can be applied on the real
underlying files. All these functions start with the prefix Do. E.g. DoMakeNew really creates the
directory with the given specification.

CDirSpec dir(“C:\\Temp\\Ours”);
dir.DoMakeNew();

The previous example creates the directory C:\Temp\Ours. If the directory C:\Temp does not yet exist it
will be created before C:\Temp\Ours is created. Other actions that can be performed are :

Octo+ Class Library (Pack 1) 4

BOOL DoGetCurrentDir();
BOOL DoSetCurrentDir() const;
BOOL DoMakeNew() const;
BOOL DoRemove(BOOL bRecursively = FALSE, BOOL bAlsoRemoveReadOnly = FALSE) const;
CString GetFileSystemType();
BOOL MakeTemp();
BOOL MakeUnique();
BOOL MakeLargestExisting();
BOOL Exists() const;
BOOL IsEmpty() const;
void Empty();
BOOL IsEmptyDir() const;

File specifications also contain information like the file size, the attributes and the time specification.
These can be accessed using the following functions :

CTime GetTime() const;
BOOL SetTime(CTime time);
LONG GetLength() const;
BOOL SetLength(LONG lnLength);
BYTE GetAttributes() const;
BOOL SetAttributes(CFile::Attribute attributes);
BOOL IsEmpty() const;
void Empty();

Both directory and file specifications have fully defined comparison operators (==, !=, <=, <, >=, >),
empty construction, construction from a const char*, copy constructors and assignment operators.

The functions that actually do something with a file are grouped in the path spec. Some of them are :

BOOL DoCopy(CPathSpec destinationPath) const;
BOOL DoMove(CPathSpec destinationPath) const;
BOOL DoRemove(BOOL bIgnoreReadOnly = FALSE) const;
BOOL DoGetInfo();
BOOL DoSetTime();
BOOL DoSetLength();
BOOL DoSetAttributes();

The existence of files can be organised using the functions :

BOOL MakeTemp(BOOL bCreateEmpty = TRUE, const char* pszPrefix = TEXT("TMP"));
BOOL MakeAbsolute();
BOOL MakeUnique();
BOOL Exists() const;

Starting from a path specification you can iterate all the files in the specified directory (using a specific
file specification with wild characters, e.g. *.tmp). You can also iterate all the directory specifications.
These iterations are done using a CPathIterator object together with the following member functions of
CPathSpec :

BOOL GetFirstFile(CPathIterator& Iterator) const;
CFileSpec GetNextFile(CPathIterator& Iterator) const;

BOOL GetFirstDir(CPathIterator& Iterator) const;
CDirSpec GetNextDir(CPathIterator& Iterator) const;

If you want to recursively search for a specific file you can use :

BOOL DoSearch(CFileSpec fileName, CDirSpec startingDir = CDirSpec(), BOOL bRecursively = FALSE);

If you ‘d rather get the full result of a search in one call, so you can handle the iteration yourself, you can
use the classes CDirList and CFileList. This search function gives you a (sorted) array of CDirSpecs or
CFileSpecs. This can be interesting to fill a listbox or combobox.

Octo+ Class Library (Pack 1) 5

File manipulation
The file manipulation classes convert the contents of a file in another format. This is used for two
reasons : to encrypt or decrypt a file and to compute the binary difference between two versions of a file.

Encryption
Encryption can be useful if you want to hide the contents of a file from other persons : For example
when you distribute a file via disk or modem, or just to make sure no one else can access your private
information.

The CMDCCryptor class uses a fast secret-key encryption.. The cipher operates on 256 bit (32 byte)
blocks, using a 768 bit (96 byte) key. The only restriction is that the two 48 byte halves of the key should
not be the same.

To make the encryption - decryption fully transparent you can use the CCryptFile class. This class is
derived from CFile, so all the things you can do on a CFile-object apply also to a CCryptFile object. You
can read from it, write to it, move the position, change or retrieve the length, flush the buffers etc. The
functions ReadString and WriteString which are normally only available in the buffered CStdioFile class
are here also available to the non-buffered CFile class.

virtual BOOL Open(const char* pszFileName, UINT nOpenFlags, CFileException* pError = NULL);
virtual CFile* Duplicate() const;
virtual DWORD GetPosition() const;
virtual LONG Seek(LONG lOff, UINT nFrom);
virtual DWORD GetLength() const;
virtual void SetLength(DWORD dwNewLen);
virtual UINT Read(void FAR* lpBuf, UINT nCount);
virtual void Write(const void FAR* lpBuf, UINT nCount);
virtual char* ReadString(char* psz, UINT nMax);
virtual void WriteString(const char* psz);
virtual void LockRange(DWORD dwPos, DWORD dwCount);
virtual void UnlockRange(DWORD dwPos, DWORD dwCount);
virtual void Abort();
virtual void Flush();
virtual void Close();

Within one file you can even encrypt some parts of the file and leave others untouched. Imagine you
organise a lot of information in a file and it contains a large picture. If you don’t want the picture to be
encrypted you can turn the encryption off, write the picture and afterwards turn it back on. Another use
is a small header in the beginning of the file, which states whether the following information is encrypted
or not.. The header itself is then never encrypted.

BOOL IsConvertEnabled() const;
BOOL EnableConvert(BOOL bEnable = TRUE);
WORD ForceEnableConvert(BOOL bEnable = TRUE);

Because encryption works on blocks of 32 bytes, your file size will always be dividable by 32. This is
also done fully transparent.

The actual CFile functionality is in fact grouped in the class CConvertedFile. This class allows
conversion during reading and writing. For doing so it calls the pure virtual functions

virtual BOOL ConvertRead(LPCBYTE pOriginal, LPBYTE pConverted) = 0;
virtual BOOL ConvertWrite(LPCBYTE pOriginal, LPBYTE pConverted) = 0;

These functions are implemented in the derived class CCryptFile. If you want to provide other
conversions apart from encryption during file access, you could derive directly from CConvertedFile.
But this is not necessary to use encryption.

Octo+ Class Library (Pack 1) 6

Binary Difference
The classes that encapsulated binary differences are able to compute the difference between two versions
of a file. Imagine you have an original file and an updated file. Using the CBinDiffCalculator you can
see what changed from the original to the updated version. This difference can then be written to a third
file. Later on you can reproduce the updated version, starting from the original and the difference file.

Difference = Update - Original
Update = Original + Difference

This can be useful if you want to send an updated version to other people. You do not have the send
them the entire new file, but just the differences. These can then be applied to the original file which
results in the fully updated version. Normally the difference file is much smaller then the entire updated
file.

You can directly supply path specifications to create the difference or updated file

void SubtractFiles(LPCTSTR orgFilNam, LPCTSTR derivedFilNam, LPCTSTR diffFilNam);
void AddFiles(LPCTSTR orgFilNam, LPCTSTR derivedFilNam, LPCTSTR diffFilNam);

Another possibility is that you create three CFile derived objects, open them and let the
CBinDiffCalculator object use them. This creates the possibility to use other CFile based classes :
CMemFile, CCryptFile or your own.

virtual void SubtractFiles(CFile* pOrgFil, CFile* pDerivedFil, CFile* pDiffFil);
virtual void AddFiles(CFile* pOrgFil, CFile* pDerivedFil, CFile* pDiffFil);

While the differences are computed or applied a progressbar bar can visualise how much is already
completed. This information is supplied to a CDiffProgress object. By default this is just written to
standard output (e.g. a console program). You can derive your own class from it and make another visual
indicator

void ReplaceProgressBar(CDiffProgress* pProgressBar);

If you want to use the class only to AddFiles you can #define BDEXTR as 1, which will make the class
more compact.

Utility Classes
Some extra utility classes are also provided.

String and date
The first class is an extended string class CXString. This class is mainly used internally within the other
classes, but can also be used directly. It can easily check whether a string contains a valid integer or
floating point number. Spaces can be removed in front of, behind or in the middle of a string. Etc.

The CDate class encapsulates a year - month - day triplet. You can calculate days using :

CDate operator+(int deltaDate) const;
const CDate& operator+=(int deltaDate);
CDate operator-(int deltaDate) const;
const CDate& operator-=(int deltaDate);
int operator-(CDate date) const;

Or you can compare dates (==, !=, <= , <, >=, <), determine the day of the week. You can check whether
a date is valid or really exists. Persistent dates are supported by archiving them using :

friend CArchive& AFXAPI operator<<(CArchive& ar, CDate date);
friend CArchive& AFXAPI operator>>(CArchive& ar, CDate& rdate);

Octo+ Class Library (Pack 1) 7

All dates from the beginning of the Julian calendar (1583) to infinity are supported.

Version information
Most executable files and dynamic link libraries contain version information. Some of it is shown when
you retrieve the properties of a file using File Manager or Windows Explorer. To get all the information
you can use the CVersionInfo class.

By calling the

BOOL ReadInfo(const char* pszPathName);

function the following information is retrieved :

DWORD m_dwSignature;
DWORD m_dwStrucVersion;
DWORD m_dwFileVersionMS;
DWORD m_dwFileVersionLS;
DWORD m_dwProductVersionMS;
DWORD m_dwProductVersionLS;
DWORD m_dwFileFlagsMask;
DWORD m_dwFileFlags;
DWORD m_dwFileOS;
DWORD m_dwFileType;
DWORD m_dwFileSubtype;
DWORD m_dwFileDateMS;
DWORD m_dwFileDateLS;

DWORD m_dwLanguageCountryID;
CString m_sLanguageCountry;

CString m_sComments;
CString m_sCompanyName;
CString m_sFileDescription;
CString m_sFileVersion;
CString m_sInternalName;
CString m_sLegalCopyright;
CString m_sLegalTrademarks;
CString m_sOriginalFilename;
CString m_sPrivateBuild;
CString m_sProductName;
CString m_sProductVersion;
CString m_sSpecialBuild;

How to use
The different classes can be divided into clusters. Each cluster can be used individually :

à File Organisation
à CDirSpec [dir]
à CFileSpec [file]
à CPathSpec [path]
à CDirList [dirlist]
à CFileLIst [filelist]
à CPathIter [pathiter]
à CXString [xstring]
à File constants [filelmt.h]

à Encryption
à CConvertedFile [convfile]
à CCryptFile [crypfile]
à CMDCCryptor [mdccrypt]
à CWatchBuffer [watchbuf]

à Binary Difference

Octo+ Class Library (Pack 1) 8

à CBinDiffCalculator [bdifcalc]
à CDiffProgress [progress]

à Date
à CDate [date]

à Version information
à CVersionInfo [verinfo]

To use them add a complete cluster of classes to your make file and recompile. No Visual C++ features
are used in the classes, so every compiler that supports MFC can use the classes.

Registration
The Octo+ Class library is a “shareware program” and some classes of it are provided at no charge to the
developer for evaluation. Feel free to share it with your friends, but please do not give it away altered or
as part of another system. The essence of “user-supported” software is to provide developers with quality
software without high prices, and yet to provide incentive for programmers to continue to develop new
products. If you find this Library useful and find you are using classes of the Octo+ Class Library in your
products, you must make a registration payment of $100 to Periphere (the people behind the scenes). The
$100 registration fee will license one copy for one developer on any one computer at any one time. Upon
registration the complete Octo+ Class Library will be eMailed to you. It is considered as an annual
subscription fee. New classes and newer versions of existing classes will be eMailed to you.

On line Registration:
You can register on-line at Compuserve and the Complete Octo+ Class Library will be eMailed to the
registration account as soon as possible. The process is simple, just !GO SWREG and follow the
directions using the following registration numbers:

FMGMT classes registration #8295

Or contact:

Periphere nv
Leuvensesteenweg, 282 bus 1
3190 BOORTMEERBEEK
(CIS-ID: 100117,265)
Tel: (..32)15/52.82.62
Fax: (..32)15/52.82.63

Single User Octo+ Class Source Code License
Agreement

IMPORTANT - READ CAREFULLY

By installing this source code package, or exercising your rights to make and use copies of the Software (as may be provided for
below), or keeping this package for over 30 days, you agree to be bound by the terms of the Periphere Octo+ class Software License
Agreement. If you do not agree to the terms of this Agreement , promptly return this package to the place from which you obtained it
within 30 days for a full refund. If you would like specific rights not granted in this agreement, please contact Periphere for more
information.

Periphere License Agreement

The enclosed software, including, but not limited to, one or more of the following: source code, object code, dynamic link libraries,
static libraries, header files, sample programs, utility programs, Makefiles and scripts, together with the accompanying documentation

Octo+ Class Library (Pack 1) 9

(collectively known as the “Software”) is owned by Periphere or its suppliers and is protected by US copyright laws and international
treaties. Therefore, you must treat the Software like any copyrighted material (e.g., a book or musical recording) except that you may
make either (a) one backup copy of the Software solely for backup purposes, or (b) transfer the Software to a hard disk and keep the
original copy solely for backup purposes.

Periphere grants to you (one software programmer) the limited right to use only one copy of the Software on a single computer
(typically one personal computer) in the manner set forth in this agreement. Each Software Programmer must have his or her own
license to use the Software.

Subject to the restrictions contained in this agreement, you MAY:
a) Modify (i.e. modify the source code and rebuild) the dynamic link libraries and statically linked libraries and incorporate the

modified dynamic link libraries and statically linked libraries into C++ software application products that you develop.
b) Make and distribute copies of the dynamic link libraries and statically linked libraries of the Software as incorporated into C++

software application products that you develop provided that the Software, or other Periphere products, do not constitute a
major portion of the value of your product.

c) Solely with the respect to electronic documents, you may make an unlimited number of copies (either in hardcopy or electronic
form), provided that such copies shall be used only for internal purposes and are not republished or distributed beyond the
licensee’s premises.

d) Use and modify the source code version of those portions of the Software that are identified in the documentation as the Sample
Code (“SAMPLE CODE”), provided you do not distribute the SAMPLE CODE, or any modified version of the SAMPLE
CODE, in source code form.

Notwithstanding any provisions in this agreement to the contrary, you may NOT:
a) Distribute in any manner any of the header files, source code, SAMPLE CODE, Makefiles, object modules or independent static

libraries of the Software.
b) Use, copy, modify, merge or compile all or any portion of the source code or object code of the Software except as expressly

provided in this agreement.
c) Make telecommunication transmittal of the Software.
d) Distribute any portion of the Software or any derivative of any portion of the Software in a software development product or

otherwise in competition with Periphere’s distribution of the Software.
e) Decompile, disassemble or reverse engineer any object code form of any portion of the Software.
f) Export from the United States any portion of the Software without obtaining prior written consent of Periphere and all applicable

export licenses and governmental permits.
g) Rent or lease the Software.
h) Disclose any source codes of the Software to any person or entity.
i) Port the Software to any computer Operating System other than: Windows 3.1, Windows NT, Windows 95 and Macintosh

System 7 without the express written consent of Periphere.

The source codes of the Software are valuable assets of Periphere. You agree to keep all source codes of the Software in confidence.
You may not transfer or assign the Software or your rights under this agreement.

Limited Warranty

Periphere warrants to you (the original licensee only) that the unaltered Software will substantially perform the functions described in
the documentation for a period of 60 days after the date of delivery of the Software to you. Periphere’s sole obligation under this
warranty shall be limited to using reasonable efforts to correct material, documented, reproducible defects in the unaltered Software
that you describe and document to Periphere during the 60-day period. In the event that Periphere fails to correct a material,
documented, reproducible defect within a reasonable period, Periphere may, in Periphere’s discretion, replace the defective Software,
or refund to you the amount that you paid Periphere for the defective Software and cancel this agreement and the licenses granted
herein. In such event, you agree to return to Periphere all copies of the Software.

EXCEPT AS SPECIFICALLY PROVIDED IN THE PARAGRAPH IMMEDIATELY ABOVE, PERIPHERE MAKES NO
WARRANTY, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, ANY WARRANTY OF MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL PERIPHERE BE LIABLE FOR ANY INDIRECT,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES (INCLUDING LOSS OF PROFITS) WHETHER BASED ON
CONTRACT, TORT OR ANY OTHER LEGAL THEORY, EVEN IF PERIPHERE WAS ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

Periphere will provide you (the original licensee only) with limited technical support by telephone, or by electronic media for a period
of 60 days after delivery of the Software to you.

U.S. GOVERNMENT RESTRICTED RIGHTS

The SOFTWARE and documentation are provided with RESTRICTED RIGHTS. Use, duplication, or disclosure by the Government
is subject to restrictions as set forth in subparagraph (c)(l)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013 or subparagraphs (c)(1) and (2) of the Commercial Computer Software -- Restricted Rights at 48 CFR 52.227-19, as
applicable. Contractor/manufacturer is Periphere NV, 3190-Boortmeerbeek, Leuvensesteenweg, 282 bus 1, Belgium. This agreement
is governed by Belgium law and the Brussels court.

For more information contact:

Periphere nv
Leuvensesteenweg, 282 bus 1

Octo+ Class Library (Pack 1) 10

3190 BOORTMEERBEEK
(CIS-ID: 100117,265)
Tel: (..32)15/52.82.62
Fax: (..32)15/52.82.63

An Octopus has many arms, through this library we hope to become a valuable partner within
your development team by reaching out more than one helping hand.

	Octo+ Class Library
	Contents
	Introduction
	Goal
	Value for money
	Administration/Maintenance
	Full Source
	New contributions
	Quality assurance
	Free DefManager

	General structure
	File organisation
	File manipulation
	Encryption
	Binary Difference

	Utility Classes
	String and date
	Version information

	How to use
	Registration
	Single User Octo+ Class Source Code License Agreement

